
NASA TECHNICAL TRANSLATION NASA TT F-16,113

HEAT ESCAPE AND DIFFUSION OF HYDROGEN AND DEUTERIUM

IN THE THERMOSPHERE\OF THE EARTH

Yu. G. Malama

(NASA -TT-F-16113) HEAT ESCAPE AND DIFFUSION N75-1521 7

OF HYDROGEN AND DEUTERIUM IN THE
THERMOSPHERE OF THE EARTH (Scientific
Translation Service) 27 p HC $3.75 CSCL 04A Unclas

G3/46 06589 _

Translation of "0 teplovom ubeganii i
diffuzii atomov vodoroda i deyteriya
v termosfere zemli", Institute of Space
Research, 3 Academy of Sciences

SUSSR, M-scow, 1974, 29 pp.

WASHINGTON, D. C. 20546 JANUARY 1975

NATIONA AERONUTICS AD SPAC ADMINITRATIO
WASINGOND.C. 05.6 ANURY 97



STANDARD TITLE PAGE

1. Repbrt No. 2. Government Accession No. 3. Recipient's Catalog No.

NASA TT F-16,113
4. Title and Subtitle 5. Report Date

HEAT ESCAPE AND DIFFUSION OF HYDROGEN AN ,TJANHARY 1975
DEUTERIUM IN THE THERMOSPHERE OF THE 6. Performing Organization Code

EARTH
7. Author(s) 8. Performing Organization Report No.

Yu. G. Malama 10. Work Unit No.

11. Contract or Grant No.
9. Performing Organization Name and Address NASw-2483

SCITRAN 13. T ypo of Report and Period Covered
iox 5456iox 5456 Translation
Santa Barbara, CA 910 Translation

12. Sponsoring Agency Name and Address
$ationa Aeronautics and Space Administration
Wasnington, D.C. z0546 14. Sponsoring Agency Code

15. Supplementary Notes

Translation of "0 teplovom ubeganii i diffuzii atomov
vodoroda j_ deyteriya v.termosfere zemli", Institute of
Space Research, __ Academy of Sciences USSR-, Moscow, 1974,
29 pp.

16. Abstract

The problem of escape and diffusion of hydrogen and deuterium
atoms from the thermospher'e of the Earth is solved by the
Monte Carlo method for the model of a stationary, flat at-
mosphere. The concentration profiles which are obtained are
compared with a numerical solution of'the diffusion equation.
The question of the violation of the Maxwell velocity dis-
tribution of H atoms is analyzed, and the effect of this
violation on the magnitude of the escape. flux and concen-
tration profiles is ckonsidered.

17. Key Words (Selected by Author(s)) 18. Distribution Statement

Unclassified - Unlimited

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price

Unclassified Unclassified

ii



ANNOTATION

The problem of escape and diffusion of hydrogen and deuterium

atoms from the thermosphere of the Earth is solved by the Monte Carlo

method for the model of a stationary, flat atmosphere. The concen-

tration profiles which are obtained are compared with a numerical

solution of the diffusion equation. The question of the violation

of the Maxwell velocity distribution of H atoms is analyzed, and

the effect of this violation on the magnitude of the escape flux and

concentration profiles is considered.
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HEAT ESCAPE AND DIFFUSION OF HYDROGEN AND DEUTERIUM

IN THE THERMOSPHERE OF THE EARTH

Yu. G. Malama

Introduction

The phenomenon of escape of light atoms from the gravitational /3"

field of a planet and the diffusion flux which arises as a result

determine to a large extent the concentration profile of these atoms

in the thermosphere and exosphere. The usual method for the theo-

retical determination of concentration profiles of small components

consists of formulating a model of the atmosphere with subsequent

solution of the diffusion equation [1, 2], which, taking turbulence

into account, has the form:

Here, nl, DI, dl, Se are, respectively, the concentration, coeffi-

cients of diffusion and thermal diffusion, and escape flux of atoms

of the small component in the atmosphere; D is the turbulent dif-

fusion coefficient; T is the temperature of the atmosphere; HI

kT/mlg 0nd H = kT/mg are the altitude scales of the small component

Numbers in the margin indicate pagination in the original foreign
text.
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and the atmosphere, respectively; g is the acceleration of gravity;

m I is the mass of atoms of the small component; m is the average mass

of the atmospheric particles. The well known Jeans [3] formula is

usually used for the flux lrj

C ') .' -

L:L PAP - - 7 (2)

where Z c is the critical level, defined from the condition:

H/V6 > I '/(3)

and iVis the macroscopic cross section for an atom of the small

component colliding with particles of the atmosphere.

At altitudes up to Z "' (200 - 300) km, where the effective

Knudsen numbers K = A/H << I (A is the mean free path), Equation (1) /4

is undoubtedly valid. However, with the approach to Z = Zc, where

by definition K = 1, we are in principle outside the region of appli-

cability of the hydrodynamic description [4], and thus it is diffi-

cult to obtain an estimate, within the framework of hydrodynamics,

of the error which arises in the use of Equation (1).

The Jeans formula (2) comes in for criticism also. Two assump-

tions underlie the derivation of this formula: (1) for all Z < Z ,

the Maxwell velocity distribution is preserved for atoms of the small

component, and (2) atoms with velocities satisfying the escape con-

dition experience no collisions above a critical level. It is evi-

dent that use of these assumptions must lead to an overestimate of

the escape flux.

These difficulties may be overcome by solving the problem of

escape and diffusion of light atoms of the small component with the

help of the Monte-Carlo method [5 - 12], which enableis one to find

a physically precise solution for all Knudsen numbers and for any

deviations from the Maxwell-Boltzmann distribution.
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Kastner [5] studied the diffusion of H atoms in an atmosphere

of N2 with barometric altitude distribution, without taking into ac-

count the effect of gravity on the motion of the H atoms. From his

results, it follows, in particular, that already for K % 0.003, the

effective diffusion coefficient is about two times less than the

value which follows from kinetic theory; however, the methodological

errors tolerated in [51 makes this conclusion, which is so radical

for hydrodynamics, doubtful.

In [6 - 10], fundamental attention was given to obtaining a

correction to the Jeans formula (2). Of these works, only [9, 10]

obtained values of the escape flux which were close to each other.

The d4scussionslin [9, 13, and 14] on the cause of the discrepancies /5

did not lead to any definite conclusions. The required clarity was

supplied by Brinkmann [10], who pointed out errors allowed by the

authors of [5 - 7, 9] in generating certain random quantities.

At the same time, while there are no theoretical objections to

the purely Monte Carlo procedures used-in [10] and-subsequently in

[11, 12], there are, in our view, well known objections to the phy-

sical formulation of the problem in these works. In fact, the atmos-

phere in [10 - 12] was approximated by a uniform layer of 0 gas

atoms. In reply to a remark by Liwshitz and Singer [7] on the un-

reality of the model, Brinkmann [10] has ppbinted out that the degree

of violation of the Maxwell velocity distribution for H atoms is

defined by the "optical" thickness of the layer, calculated from its

upper boundary, and, as a consequence of this, the models of the at-

mosphere with uniform and barometric distributions of the fundamental

gas are physically equivalent. If one views the goal of the Monte

Carlo calculations as being only to obtain a correction to the Jeans

formulal(2), then the point of view of the authors of [10 - 12] is

justified. However, as was indicated above, a check of the applica-

bility of the diffusion equation (1) is of significant interest,

and in this case the nonuniformity of the atmosphere plays a deci-

sive role.
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Thus, the formulation of the Monte Carlo part of the problem

must be, in-our opinion, broader than in [10 - 12], and should be

as follows: it is necessary to calculate the escape flux and concen-

tration profile for the atoms which are of interest to us, i.e., the

atoms of the small component in the region Zin < Z < Z and it
min = max'

is desirable that the temperature and concentration profiles of the

fundamental components of the atmosphere correspond sufficiently /6

closely to reality. Concerning the choice of boundaries for the

layer of atmosphere, one can say the following. Since with a de-

crease of Zmin, the number of collisions experienced by an atom and,

thus, the calculation time rapidly increase (in a number of varia-

tions, it increases exponentially), there is no advantage to placing

Zmin. at the base of the thermosphere. At the same time, the values

of Z . and Z must be such that the hydrodynamic and free-moleculemzn max

approximations in the regions Z < Z and Z > Z respectively,min max

are undoubtedly applicable. In addition, it is necessary to choose

a sufficiently large optical thickness of the layer of atmosphere,

such that in the region immediately above'Zmin the Maxwell velocity

distribution is preserved for atoms of the small component.

Statement of the Problem

The main goal of the present paper is to check the applicability

of the hydrodynamic solution of the problem of escape and diffusion

of H and D atoms in the upper atmosphere of the Earth. Since, as in

the preceding papers, a stationary onedimensional model of the at-

mosphere is used, the numerical results presented below differ from

observational data obtained, for example, by measurements of the

Lyman-a line absorption.

It is assumed that below 90 km, turbulent diffusion leads to

complete mixing of the components of the atmosphere, and that above

90 km, there are no sources of H and D atoms. The temperature of

the atmosphere was considered constant for 90 km < Z < 120 km.,
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For the region Z > 120 km, the model of [15] was used:

. . .(4 )

iv-

where Z = 120 km, Tm is the model parameter, T(Z ) = 3550 K, /7

(dT/dZ)Z=Z0 = 20 deg/km. The model atmosphere consists of 0, 02, N2,

and Ar, with concentrations at altitude Z = 120 km, n(O) = 9.6 *

1i 73 10 -i3 11 r-310 /cm , n(0 2) 6.0 10 /cm , n(N 2) = 4.5 * 10 /cm , and n(Ar) =

2.2 109 /c 3 [16]. For the remaining altitudes Z > 90 km, the con-

centrations of the fundamental components-were found by integration

of Equation (1) with Se = 0.

The trajectories of the H and D atoms were simulated by the

Monte Carlo method in the region 250 km < Z < 1000 km [it was con-

sidered that for 90 km < Z < 250 km the diffusion equation (1) is

valid]. In this region, only 0 atoms and N 2 molecules are taken into

account (in some calculations He atoms were also added, but the re-

sults with these atoms were practically unchanged). As it is sub-

sequently proposed to combine the Monte Carlo results with the solu-

tion of Equation (1), it was considered to be expedient to take into

account the direct effect of the force of gravity on the motion of

H and D atoms, in contrast to the previous papers.

The entire region (Zmin, Zmax ) was divided into 30 layers,

within each of which the acceleration of gravity, the temperature,

and the concentrations of all components of the atmosphere were con-

sidered constant. The collisions were assumed to be purely elastic;

for deuterium a solid sphere model was used, while iinthe case of

hydrogen, two series of calculations were carried out - one with a

solid sphere cross section, and one with a cross section found be-

forehand by the WKB method [17]. In the first case, the numerical

values were:

5



= 1.713 10 - 1 5 cm and = 3.285 • 10-15 cm,

and in the second, the only difference from [10] was a modification /8

of the interaction potential with account of the four electronic

states of 0 3 )  H (2 s ) system [18, 19]. In particular, for the

average total 0 + H collision cross section, the approximation:

was obtained, where u is the speed opfrelative motion, and v0

4.08 105 cm/sec is the thermal speed of H atoms at T = 1030 K.

Let us now consider the choice of the calculational scheme.

Brinkmann [10] has shown that for small values of the parameter

mv /2kT, where ve is the minimum escape velocity, the application of

direct Monte Carlo simulation for the calculation of the escape flux

is not effective. Instead of this, he proposed the method of

"mirror" particles, which is in essence a particular case of the

method of separating out the principal part [20]. The latter is

based on representing the required solution in the form of a sum of

two terms f = fl + f2, where it is assumed that one of them, let us

'say fl' is either known beforehand or can be easily found by other

methods. If, furthermore, the correction f2 can be found by the

Monte Carlo method, then the problem as a whole is thereby solved.

The effectiveness of the method of separating out the principal part

increases with increasing strength of the inequality Ifll > If2 1.

In the problem being considered, it is natural to choose as

the known function not the uniform distribution, as in [10], but the

solution of the generalized barometric equation:
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which we denote by n 0)(Z). The actual solution is then equal to: /9

(7)

where the function n(-) (Z), as in [10], is the concentration profile

for atoms of the small component with a source in the plane !ZJ= .Zax

The strength of this source is equal to:

3(-. fI O)(Zrn)w~(o) (Z~mx) (8)
(0)

where w e  is defined by Relation (2).

Description of the Calculational Methods

The position of an atom in phase space is characterized by the

coordinate Z and by the velocity components vx, Vy, v. (the introduc-x y z
tion of three components instead of two is purely for calculational

convenience). The sequence of a simulation of trajectories of atoms

contributing to the profile n!-) is given below (more cumbersome

algorithms are presented in the appendix).

1. Injection of atoms into a layer of atmosphere in the plane

Z Zmax For the velocity vector

we have a distribution density which is proportional to the flux:

A o , (9)

where A is the normalization constant, and the values v and T refer
e

to the plane Z = Zmax The value of cos ' is generated according

to cos e = - , while the values of cos P, sin are generated

Here and below, B is a running random number, uniformly distributed
in the interval (0, 1).
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by the Neumann method [20]:

S i~-(10)

2 2
with rejection for 2 +  2 > 1. The quantity v was generated in /10

1 2

accordance with Expressions (A-1) and (A-2).

2. Simulation of the trajectory of an atom in the ith layer

(Zi < Z < Z:i+l). In the general case, an-atom can either experi-

ence a collision with one of the particles of the atmosphere, or

leave this layer without collisions. The macroscbOpic cross section

for collision of an atom with particles of the atmosphere is equal to:

th
where na is the concentration of the ath component in the layer i,

and < is the mean integral collision cross section for an atom

with a particle of type a. This cross section has the form [10]:

1d.. l f2rr m 2 ( 2.rL ( "6 ( ((J a (12)

Using the "nottion _2Z r 2 - , it is convenient to write
n 2KTL

the latter expression in the form:

e- j *" 9, (13)

The values of Qi'> were calculated beforehand for 48 discrete values

of K in the interval (0, 20), on the basis of which the values of

< (r)i and G'(7) were found by linear interpolation. After estab-

lishing the mean free path of an atom:

t8 6 (14)
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the time ti of its collisionless existence in the i t h layer was cal-

culated (taking into account the force of gravity). For t t,

it was considered that the atom had left this layer without colli- /11

sion, and it was given new coordinates:

(15)

and components vZ:

(16)

In the opposite case t. > t., the values of Z and vZ were also cal-

culated, and it was considered that a collision had taken place.

3. Generation of the collision. In the first stage, a selec-

tion of the particle partner type was made with respect to the col-

lision; the corresponding probabilities follow directly from (11).

For the parameters of this particlel, we have the distribution density:

L~co-, J V) A ul 6a 2rL- (17)

where A is an insignificant normalization constant. The algorithm

for generating the quantities va and cos a is presented in the ap-

pendix [Formulas (A-3) - (A-7)]. Although the formulas for calculat-

ing the results of the collision itself are simple, they are somewhat

cumbersome, and will not be presented here.

Steps 1 - 3, in fact, exhaust the algorithms for simulation of

the trajectories. The boundary conditions, analogously to [10], are

reduced to a cutoff of the trajectories either for Z, = Zmin , or for

simultaneous fulfillment of the conditions Z = Z v > v . For
max' = e

Z = Zmax, v < Ve, a mirror reflection of the particle is carried out:

S= -

9



The quantities ET. and ET. were calculated for N statistically
1 ip

independent trajectories, where T.i is the time spent by an atom in /12

th
the i layer, T. is the time spent by an.atom in the phase cell

'p

(Zi, Vp) with volume AZ • Av, and the summation is carried out over

all the trajectories. In addition, the number of escaing atoms N(- )

was calculated. After realization of all N trajectories, the con-

centration:

n (18)

was found for each layer (the velocity distribution functions were

determined similarly). Finally, the concentration profile:

, fl (7mo) (mqxffi (19)

and escape flux:

0r (20)

were calculated in accordance with Expressions (7) and (8).

The escape flux found by the Monte-Carlo method was substituted

into the diffusion equation (1), which was then numerically inte-

grated from Z = 90 km to Z = 800 km, with normalization nH (90 km)

1, nD (90 km) = 1.5 * 10 . For the coefficients D1 and al, the

values corresponding to the solid sphere model [17] were used:

(21)

where the summation is carried out over all fundamental components

of the atmosphere, Mfj
=

L- , and the turbulent diffusion coefficient

was set equa'l to the constant value Dt = 5 * 106 cm/sec, recommended

in [21]. The concentration profiles calculated by the Monte Carlo
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method were then joined with the solution of Equation (1) in the

region Z " 250 km.

Results of the Calculations

Let us first of all consider results of calculations for the /13

diffusion of atoms in a flat isothermal atmosphere' composed of a

single type of particle with an exponential distribution of concen-

tration along the Z axis. As in [5 the force of gravity is not

taken into account here. Substituting the values of the flux S and

the concentration profiles nl(Z) of the small component obtained by

the Monte Carlo method into the formal diffusion equation:

S= (22)

it is possible to calculate the values of the effective diffusion

coefficient D for different Knudsen numbers (Figure i).j It is seen

that the deviation of D from the value D g, which follows from kinetic

theory [17], is about 10% for K = 0.4, and.about 35% for K = 10.

Let us now discuss results obtained in the solution of the

problem of the escape and diffusion of H and D atoms. Several cal-

culations were carried out for both of these small components with

a solid sphere model for five values of the exosphere temperature

(750, 1000, 1250, 1500, and 20000 K). In the case of hydrogen,

similar calculations were done with cross sections obtained by the

WKB method. In addition, for T, = 15000 K, a calculation was carried

out by the direct Monte Carlo simulation method. The 'results of the

simulation agreed with the results obtained by the method of separ-

ating out the rincipal part, to within the limits of statistical

error.

Figure 2 shows "mirror" and real profiles of effective tempera-

tures for H atoms (solid sphere model) for three values of T . The

mirror profiles can serve as a very sensitive criterion for the

correctness of the choice of optical thickness for the layer of

li



atmosphere. It is seen that the maxwellization of the mirror atoms /14

is totally completed in a distance of about 20 X from Zma x . Thus,

the choice of a layer of atmosphere with thickness less than 20 A

can lead to physically incorrect results. In connection with this,

it can be noted that in the work of Brinkmann. [10], the tendency

toward increase of the escape flux with a decrease of the layer

thickness from 15 A to 10 X, and further to 5 A is clearly traced.

Such a significant optical thickness for the layer Zmax - Z min

20 A, which is necessary for preserving the Maxwell distribution of

H atoms near Zmin, is explained, of course, by the low effectiveness

'in thetransmission of energy during collisions of particles with

very different masses.

(0)Figure 3 shows the corrections to the Jeans magnitude S fore

the escape flux which were obtained with the Monte Carlo method in

comparison with the data of [10, 11]. The completely satisfactory

agreement is explained, apparently, by the fact that the degree of

violation of the Maxwell distribution bf H atoms at the altitude Z

depends only on the optical thickness (Zmax - Z)/A, and on the mass

ratio for the atoms of the small component and the fundamental gas

of the atmosphere. The nonuniformity in the concentration of the

atmosphere does not affect these results. We also confirmed the.

conclusion by the authors of [10, 11] that the inaccuracy in deter-

mining the collision cross section is weakly manifested in the mag-

(0)nitude of the ratio S /S . The presence of a weak minimum ate e

T, r 12500 K follows from our data. Although this minimum might be

completely explained by statistical error, its appearance is not

physically meaningless. In this connection, one can, apparently,

make an analogy with the violation of the Maxwell velocity distribu-

tion in chemically reacting gases. Analytic calculations using the /15

generalized Chapman-Enskog method and Monte Carlo calculations [22]

have distinctly shown the presence of a minimum in the temperature

dependence of the ratio R/R(0) where R is the true reaction rate,
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and R (O) is the,'reaction rate with the assumption that the Maxwell

velocity distribution is preserved for the reacting particles.

Figure 4 shows concentration profiles for H atoms (solid sphere

model) for three values of T. At low temperatures (curve 1), the

profiles calculated by the Monte Carlo method and those obtained by

direct integation of Equation (1) coincide in practically the whole

region 250 km < .Z < 800 km. This result is explained by the fact

that, for a small escape flux, the concentration profile for H atoms

is practically the same as the generalized barometric distribution,

which, as is well known, is valid for any Knudsen numbers.

A first glance, the concentration profiles at higher tempera-

tures appear strange: in the first place, one might expect that the

deviation of the Monte-Carlo profiles from the solution of Equation

(1) must increase with an increase of T.. Secondly, another sign

for these deviations seems to follow from the results presented in

Figure 1. In fact, since the Monte Carlo values of the escape fluxes

Se were used in the integration of (1), a decrease of the effective

diffusion coefficient with an increase of K should lead, despite

Figure 4, to more strongly negative gradients of the Monte Carlo

concentration profile in comparison with the hydrodynamic profile.

The indicated contradictions can, however, be explained by

analyzing Equation (1). Since for Z > 250 km, the turbulent diffu-

sion process plays no role, this equation can be written in the form: /16

H DL' I r -/ (23)

For Z > 400 km, the third term on the right hand side of (23),

describing the process of thermal diffusion, is negligible, because

the atmosphere at such high altitudes is isothermal. However,

Equation (23) does not take into account the fact that the escape

of fast atoms-~ith v > v leads to a violation of the Maxwell velo-= e
city distribution for H atoms, as a consequence of which a negative

gradient of the effective temperature of these atoms is established
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at altitudes Z > 400 km (Figure 2). As a result, a thermal diffusion

flux must arise from bottom to top, tending to level out the negative

gradient in the concentration of H atoms. Thus, the magnitude and

sign of the total Monte Carlo correction to the solution of Equation

(23) depend both on the ratio of the separate corrections to the flux

and thermal diffusion terms on the right side of this equation, and

on the absolute values of these terms. At low atmospheric tempera-

tures, the quantity Se is also small; as a consequence, one might

expect fulfillment of the inequality:

which explains the sign of the Monte Carlo correction for To = 15000

K. However, as the atmospheric temperature increases, so does the

importance of the term Se/D 1 . Evidently, it-is precisely this which

explains the lesser values of the corrections for T. = 20000 K, in

comparison with the case, To = 15000 K.

Profiles of the ratio of the deuterium concentration to the

hydrogen concentration for various values of To are shown on Figure

5. The increase in the values of nD/nH with the increase of T from

750 to 12500 K, and the decrease of these values upon further in-

crease of TO to 20000 K, are in good agreement with the conclusions

of McElroy and Hunten [2]. The presence of maxima on the profiles /17

for all To., excluding the value 20000. K, is in qualitative agreement

with the data of measurements of Lyman-a line absorption [23], and

is explained, apparently, by the effect of separation by diffusion

of isotopes at high altitudes. The absolute values of the quantity

D/H for T. = 12000 K presented in [23] are approximately an order

of magnitude larger than in the present paper. The cause of such

significant discrepancies might be, first, that the data of [23]

are not the result of direct observations (they are obtained, as the

authors note, as the result of the introduction of several assump-

tions). In connection with this, it may be noted that the results

of spectroscopic measurements of the concentration of D+ ions at

altitudes of (500 - 3000) km give values close to the concentrations
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of H+ ions [24]. On the other hand, the one-dimensional, flat model

of the atmosphere used in our calculations is a crude approximation,

and this could strongly distort the results.

It seems to us that for development of this work, it is neces-

sary to give up the flat model of the atmosphere in the Monte Carlo

6alculations, and.to take into account, in addition, the diurnal

variations in the temperature and concentrations of the fundamental

components of the atmosphere. It is also evident that the method

described could be extended without difficulty to such planets as

Venus and Mars.

The complexity of the structure of planetary atmospheres and

the multidude of physical and chemical processes which'occur in these

atmospheres make the use of analytic and traditional numerical meth-

ods extremely difficult. It is also impossible to disregard the

violations of thermodynamic equilibrium which take place. In many

cases, these violations can significantly limit the region of appli-

cability of these methods, which are.based on a macroscopic descrip- /18

tion. For these reasons, the use of Monte Carlo simulation is ex-

tremely promising. Besides mathematical simplicity and suitability

for computer use, this method also has theoretical advantages. The

primary advantage is its indifference to the degree of violation of

thermodynamic equilibriumand to the values of the Knudsen number.

The author is grateful to V. B. Leonas for attention to the

work and for useful advice.
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APPENDIX

Although all of the algorithms presented by Brinkmann [10] for /19

the simulation of random quantities are correct, some of these algo-

rithms are not completely appropriate. The method of integral proba-

bility, which is universally used by Brinkmann, frequently leads to

only an approximate selection of the random.quantity with specified

distribution law. In addition, in a number of cases (for example,

in the generation of the parameters of colliding particles), the

application of this method requires large amounts of machine time.

In such situations, we have used other effective and accurate methods.

For the random selection of the quantity v for the injected atom,

the transformation xzT -) was used; this converts the velocity

part of Expression (9) into the density:

KE(Y)J J 2 , (A

From the form of (A-l), it follows that with probability ((VI,

the quantity x can be considered to be distributed with density

x
2

xex , and with probability (n + 1)- 1 distributed with a density

2
Sx 3 e-x This is the basis for the choice:

The latter expression follows from an exact method of generation an

n-dimensional' normal law presented in [25].

The Kan* method [26] was taken as the basis of generating

the random quantities va and cos a, distributed according to the

Translator's note. Transliterated from the Russian.
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density (17). Let us rewrite (17) in the form: /20

U l) (r/(A-3)

where the condition p > 0 is imposed on the function 4, and

S for all u, v > 0, and all values of the quantity v,

considered as a parameter. In addition, it is desirable to select

such that 'Sup-Au6(1=!4. The Kan method consists of generating the

quantity v according to a density which is proportional to the ex-

pression in square brackets in (A-3), the generation of cos a in the

interval (-1, 1), and the calculation of u. ( zi 2 ) and

Further, the method of rejection is used: the generated values v

cos a are accepted with probability Au ,6t f '\

The specific .choice of the function ' depends, naturally, on

the form of the- cross section ci t)] . Thus, for the solid sphere

model, in which the cross section is independent of u, it is natural

to put Y=(Tf+)A a~,. The algorithm for generating the quantities va,

cos a was described in [22], and consists of the following:

a) the quantity v is generated according to the rule:

b) cpbsJo -2 -\is .generated,

c) the quantity u is calculated; for

(V I -'Lr (A-5)

the generated values of va, cos a are accepted.
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In the opposite case, all operations are repeated with new Bi,

beginning with setp a).

In the case of cross section of the form /21

the function c is put equal to

VI' "(A-7)

The details of the generation of the quantities va, cos a are very

similar to steps a) - c), and to save space they will not be pre-

sented here.
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.Figure 1. Ratio of effective diffusion coeffi-
cient D to the value Dg following from kinetic
theory (21), as a function of Knudsen number K:

1, 2 - diffusion of atoms of mass m i in a layer

of gas of atoms with mass m2 for, respectively,

m2/ml = 1, and m 2/m1 = 16
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for T 10000 K (1) , T 15000 K ( 2) , and T
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fr T =.i0000 K (i), T = 15000 K (2), and T

20000 K (3): the solid curves are the tempera-..
tures of the fundamental components of the atnYos-
phere; the points and small circles are the ef-
fective temperature of mirror and.real H atoms,
respectively, found from the corresponding dis-
tribution functions; the upper scale is the op-
tical thickness of the layer of atmosphere,

measured from Z
max
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Figure 3. Ratio of the escape flux Se, found by
the Monte Carlo method, to the flux S0) (2)

as a function of the temperature of the exosphere
T:

1 - results of Brinkman [10] for hydrogen (WKB
cross section); 2 - results of Chamberlain and
Smith [11] for hydrogen (solid sphere cross sec-
tion); 3, 4, 5 - results of the present paper,
respectively, for hydrogen (solid sphere cross
section), hydrogen (WKB cross section), and
deuterium (solid-sphere cross section). The ver-

tical bars are standard deviations
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Figure 4. Concentration profiles for H atoms
with T. = 750' K (1), T. =.15000 K (2), and
T, = 20000 K (3): the curves are the results
of a numerical integration of Equation (1);
the points are the results obtained by the
Monte Carlo method. The upper scale gives

Knudsen numbers for various T
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Figure 5. Profiles of the ratio of the con-
centrations of deuterium and hydrogen for
five values of T l the numerical values for
90 km < Z < 250 km were obtained by solution
of Equation (1),, while for 250 km < Z <

1000 km they were obtained by a Monte Carlo
simulation
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